p-group, metabelian, nilpotent (class 2), monomial
Aliases: C24.378C23, C23.563C24, C22.3372+ 1+4, C22.2522- 1+4, C23⋊Q8⋊36C2, (C22×C4).409D4, C23.201(C2×D4), C23.4Q8⋊37C2, C23.11D4⋊72C2, C2.34(C23⋊3D4), (C2×C42).627C22, (C22×C4).168C23, (C23×C4).438C22, C22.375(C22×D4), C23.10D4.37C2, (C22×D4).211C22, (C22×Q8).169C22, C23.78C23⋊34C2, C23.83C23⋊71C2, C24.C22⋊113C2, C23.65C23⋊110C2, C2.C42.277C22, C2.52(C22.26C24), C2.49(C23.38C23), C2.64(C22.36C24), C2.53(C22.33C24), (C4×C22⋊C4)⋊99C2, (C2×C4).684(C2×D4), (C2×C22⋊Q8)⋊31C2, (C2×C4).183(C4○D4), (C2×C4⋊C4).385C22, C22.430(C2×C4○D4), (C2×C22⋊C4).521C22, (C2×C22.D4).21C2, SmallGroup(128,1395)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.378C23
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=f2=1, e2=db=bd, g2=c, eae-1=ab=ba, faf=ac=ca, ad=da, ag=ga, bc=cb, be=eb, gfg-1=bf=fb, bg=gb, cd=dc, ce=ec, cf=fc, cg=gc, fef=de=ed, df=fd, dg=gd, eg=ge >
Subgroups: 500 in 249 conjugacy classes, 96 normal (34 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×Q8, C24, C2.C42, C2.C42, C2×C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C22⋊Q8, C22.D4, C23×C4, C22×D4, C22×Q8, C4×C22⋊C4, C24.C22, C23.65C23, C23⋊Q8, C23.10D4, C23.78C23, C23.11D4, C23.4Q8, C23.83C23, C2×C22⋊Q8, C2×C22.D4, C24.378C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C22×D4, C2×C4○D4, 2+ 1+4, 2- 1+4, C22.26C24, C23⋊3D4, C23.38C23, C22.33C24, C22.36C24, C24.378C23
(1 55)(2 45)(3 53)(4 47)(5 35)(6 51)(7 33)(8 49)(9 54)(10 48)(11 56)(12 46)(13 59)(14 41)(15 57)(16 43)(17 39)(18 29)(19 37)(20 31)(21 50)(22 36)(23 52)(24 34)(25 42)(26 58)(27 44)(28 60)(30 62)(32 64)(38 63)(40 61)
(1 10)(2 11)(3 12)(4 9)(5 21)(6 22)(7 23)(8 24)(13 27)(14 28)(15 25)(16 26)(17 64)(18 61)(19 62)(20 63)(29 40)(30 37)(31 38)(32 39)(33 52)(34 49)(35 50)(36 51)(41 60)(42 57)(43 58)(44 59)(45 56)(46 53)(47 54)(48 55)
(1 38)(2 39)(3 40)(4 37)(5 42)(6 43)(7 44)(8 41)(9 30)(10 31)(11 32)(12 29)(13 52)(14 49)(15 50)(16 51)(17 45)(18 46)(19 47)(20 48)(21 57)(22 58)(23 59)(24 60)(25 35)(26 36)(27 33)(28 34)(53 61)(54 62)(55 63)(56 64)
(1 12)(2 9)(3 10)(4 11)(5 23)(6 24)(7 21)(8 22)(13 25)(14 26)(15 27)(16 28)(17 62)(18 63)(19 64)(20 61)(29 38)(30 39)(31 40)(32 37)(33 50)(34 51)(35 52)(36 49)(41 58)(42 59)(43 60)(44 57)(45 54)(46 55)(47 56)(48 53)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(2 9)(4 11)(5 57)(6 41)(7 59)(8 43)(13 27)(14 16)(15 25)(17 54)(18 46)(19 56)(20 48)(21 42)(22 60)(23 44)(24 58)(26 28)(30 39)(32 37)(33 52)(34 36)(35 50)(45 62)(47 64)(49 51)(53 61)(55 63)
(1 35 38 25)(2 36 39 26)(3 33 40 27)(4 34 37 28)(5 63 42 55)(6 64 43 56)(7 61 44 53)(8 62 41 54)(9 49 30 14)(10 50 31 15)(11 51 32 16)(12 52 29 13)(17 58 45 22)(18 59 46 23)(19 60 47 24)(20 57 48 21)
G:=sub<Sym(64)| (1,55)(2,45)(3,53)(4,47)(5,35)(6,51)(7,33)(8,49)(9,54)(10,48)(11,56)(12,46)(13,59)(14,41)(15,57)(16,43)(17,39)(18,29)(19,37)(20,31)(21,50)(22,36)(23,52)(24,34)(25,42)(26,58)(27,44)(28,60)(30,62)(32,64)(38,63)(40,61), (1,10)(2,11)(3,12)(4,9)(5,21)(6,22)(7,23)(8,24)(13,27)(14,28)(15,25)(16,26)(17,64)(18,61)(19,62)(20,63)(29,40)(30,37)(31,38)(32,39)(33,52)(34,49)(35,50)(36,51)(41,60)(42,57)(43,58)(44,59)(45,56)(46,53)(47,54)(48,55), (1,38)(2,39)(3,40)(4,37)(5,42)(6,43)(7,44)(8,41)(9,30)(10,31)(11,32)(12,29)(13,52)(14,49)(15,50)(16,51)(17,45)(18,46)(19,47)(20,48)(21,57)(22,58)(23,59)(24,60)(25,35)(26,36)(27,33)(28,34)(53,61)(54,62)(55,63)(56,64), (1,12)(2,9)(3,10)(4,11)(5,23)(6,24)(7,21)(8,22)(13,25)(14,26)(15,27)(16,28)(17,62)(18,63)(19,64)(20,61)(29,38)(30,39)(31,40)(32,37)(33,50)(34,51)(35,52)(36,49)(41,58)(42,59)(43,60)(44,57)(45,54)(46,55)(47,56)(48,53), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (2,9)(4,11)(5,57)(6,41)(7,59)(8,43)(13,27)(14,16)(15,25)(17,54)(18,46)(19,56)(20,48)(21,42)(22,60)(23,44)(24,58)(26,28)(30,39)(32,37)(33,52)(34,36)(35,50)(45,62)(47,64)(49,51)(53,61)(55,63), (1,35,38,25)(2,36,39,26)(3,33,40,27)(4,34,37,28)(5,63,42,55)(6,64,43,56)(7,61,44,53)(8,62,41,54)(9,49,30,14)(10,50,31,15)(11,51,32,16)(12,52,29,13)(17,58,45,22)(18,59,46,23)(19,60,47,24)(20,57,48,21)>;
G:=Group( (1,55)(2,45)(3,53)(4,47)(5,35)(6,51)(7,33)(8,49)(9,54)(10,48)(11,56)(12,46)(13,59)(14,41)(15,57)(16,43)(17,39)(18,29)(19,37)(20,31)(21,50)(22,36)(23,52)(24,34)(25,42)(26,58)(27,44)(28,60)(30,62)(32,64)(38,63)(40,61), (1,10)(2,11)(3,12)(4,9)(5,21)(6,22)(7,23)(8,24)(13,27)(14,28)(15,25)(16,26)(17,64)(18,61)(19,62)(20,63)(29,40)(30,37)(31,38)(32,39)(33,52)(34,49)(35,50)(36,51)(41,60)(42,57)(43,58)(44,59)(45,56)(46,53)(47,54)(48,55), (1,38)(2,39)(3,40)(4,37)(5,42)(6,43)(7,44)(8,41)(9,30)(10,31)(11,32)(12,29)(13,52)(14,49)(15,50)(16,51)(17,45)(18,46)(19,47)(20,48)(21,57)(22,58)(23,59)(24,60)(25,35)(26,36)(27,33)(28,34)(53,61)(54,62)(55,63)(56,64), (1,12)(2,9)(3,10)(4,11)(5,23)(6,24)(7,21)(8,22)(13,25)(14,26)(15,27)(16,28)(17,62)(18,63)(19,64)(20,61)(29,38)(30,39)(31,40)(32,37)(33,50)(34,51)(35,52)(36,49)(41,58)(42,59)(43,60)(44,57)(45,54)(46,55)(47,56)(48,53), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (2,9)(4,11)(5,57)(6,41)(7,59)(8,43)(13,27)(14,16)(15,25)(17,54)(18,46)(19,56)(20,48)(21,42)(22,60)(23,44)(24,58)(26,28)(30,39)(32,37)(33,52)(34,36)(35,50)(45,62)(47,64)(49,51)(53,61)(55,63), (1,35,38,25)(2,36,39,26)(3,33,40,27)(4,34,37,28)(5,63,42,55)(6,64,43,56)(7,61,44,53)(8,62,41,54)(9,49,30,14)(10,50,31,15)(11,51,32,16)(12,52,29,13)(17,58,45,22)(18,59,46,23)(19,60,47,24)(20,57,48,21) );
G=PermutationGroup([[(1,55),(2,45),(3,53),(4,47),(5,35),(6,51),(7,33),(8,49),(9,54),(10,48),(11,56),(12,46),(13,59),(14,41),(15,57),(16,43),(17,39),(18,29),(19,37),(20,31),(21,50),(22,36),(23,52),(24,34),(25,42),(26,58),(27,44),(28,60),(30,62),(32,64),(38,63),(40,61)], [(1,10),(2,11),(3,12),(4,9),(5,21),(6,22),(7,23),(8,24),(13,27),(14,28),(15,25),(16,26),(17,64),(18,61),(19,62),(20,63),(29,40),(30,37),(31,38),(32,39),(33,52),(34,49),(35,50),(36,51),(41,60),(42,57),(43,58),(44,59),(45,56),(46,53),(47,54),(48,55)], [(1,38),(2,39),(3,40),(4,37),(5,42),(6,43),(7,44),(8,41),(9,30),(10,31),(11,32),(12,29),(13,52),(14,49),(15,50),(16,51),(17,45),(18,46),(19,47),(20,48),(21,57),(22,58),(23,59),(24,60),(25,35),(26,36),(27,33),(28,34),(53,61),(54,62),(55,63),(56,64)], [(1,12),(2,9),(3,10),(4,11),(5,23),(6,24),(7,21),(8,22),(13,25),(14,26),(15,27),(16,28),(17,62),(18,63),(19,64),(20,61),(29,38),(30,39),(31,40),(32,37),(33,50),(34,51),(35,52),(36,49),(41,58),(42,59),(43,60),(44,57),(45,54),(46,55),(47,56),(48,53)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(2,9),(4,11),(5,57),(6,41),(7,59),(8,43),(13,27),(14,16),(15,25),(17,54),(18,46),(19,56),(20,48),(21,42),(22,60),(23,44),(24,58),(26,28),(30,39),(32,37),(33,52),(34,36),(35,50),(45,62),(47,64),(49,51),(53,61),(55,63)], [(1,35,38,25),(2,36,39,26),(3,33,40,27),(4,34,37,28),(5,63,42,55),(6,64,43,56),(7,61,44,53),(8,62,41,54),(9,49,30,14),(10,50,31,15),(11,51,32,16),(12,52,29,13),(17,58,45,22),(18,59,46,23),(19,60,47,24),(20,57,48,21)]])
32 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 4A | 4B | 4C | 4D | 4E | ··· | 4N | 4O | ··· | 4U |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 8 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | ··· | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | C4○D4 | 2+ 1+4 | 2- 1+4 |
kernel | C24.378C23 | C4×C22⋊C4 | C24.C22 | C23.65C23 | C23⋊Q8 | C23.10D4 | C23.78C23 | C23.11D4 | C23.4Q8 | C23.83C23 | C2×C22⋊Q8 | C2×C22.D4 | C22×C4 | C2×C4 | C22 | C22 |
# reps | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 4 | 8 | 2 | 2 |
Matrix representation of C24.378C23 ►in GL8(𝔽5)
4 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 2 | 2 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 0 | 2 | 0 |
0 | 0 | 0 | 0 | 3 | 3 | 0 | 2 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(8,GF(5))| [4,0,0,0,0,0,0,0,3,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,3,2,1,0,0,0,0,0,0,2,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,3,0,2,3,0,0,0,0,0,3,0,3,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2],[1,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4],[3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0] >;
C24.378C23 in GAP, Magma, Sage, TeX
C_2^4._{378}C_2^3
% in TeX
G:=Group("C2^4.378C2^3");
// GroupNames label
G:=SmallGroup(128,1395);
// by ID
G=gap.SmallGroup(128,1395);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,253,568,758,723,185,136]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=f^2=1,e^2=d*b=b*d,g^2=c,e*a*e^-1=a*b=b*a,f*a*f=a*c=c*a,a*d=d*a,a*g=g*a,b*c=c*b,b*e=e*b,g*f*g^-1=b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,f*e*f=d*e=e*d,d*f=f*d,d*g=g*d,e*g=g*e>;
// generators/relations